

МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «Школа № 59»

«РАССМОТРЕНО» на заседании МО учителей естественно-научного цикла. Руководитель МО «СОГЛАСОВАНО»
Заместитель директора по учебной работе «УТВЕРЖДЕНО» Директор МБОУ «Школа № 59»

УНСУ Сорокина Н.А.

УЛУ Васильева Н.Н.

Миловидова А.В.

Протокол № 1 от 30.08.2023г.

30.08.2023r.

мыррикат № 120/65 – Д «Школа от 19:00 2023г.

Рабочая программа

по физике

<u>Программу составила:</u> Куликова Т.М., учитель математики и физики высшей квалификационной категории.

<u>Уровень образования (класс)</u> – среднее общее образование 11 класс, профильная группа <u>Количество часов</u> – 102

<u>Программа разработана</u> на основе ООП СОО МБОУ «Школа № 59», Физика. 10—11 классы : Рабочие программы. Предметная линия учебников серии «Классический курс».10-11 классы: учебное пособие для общеобразовательных организаций / А.В. Шаталина. — М.: Просвещение, 2017

<u>Учебник</u> «Физика.11 класс». Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский под редакцией Н.А. Парфентьевой М: Просвещение 2020.

Срок реализации программы – один учебный год

Рассмотрено на заседании педагогического совета протокол №1 от 30 августа 2023 г.

Рабочая программа по физике, ориентированная на учащихся 11-х классов, составлена в соответствии с требованиями

Федерального государственного образовательного стандарта среднего общего образования, утвержденного приказом Минобрнауки РФ от 17.05.2012 № 413.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА

Деятельность образовательного учреждения общего образования в обучении физике в средней (полной) школе должна быть направлена на достижение обучающимися

следующих личностных результатов: умение управлять своей познавательной деятельностью; готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности; умение сотрудничать со сверстниками, детьми младшего возраста, взрослыми в образовательной, учебно-исследовательской, проектной и других видах деятельности; сформированность мировоззрения, соответствующего современному уровню развития науки; осознание значимости науки, владения достоверной информацией о передовых достижениях и открытиях мировой и отечественной науки; заинтересованность в научных знаниях об устройстве мира и общества; готовность к научно-техническому творчеству; чувство гордости за российскую физическую науку, гуманизм; положительное отношение к труду, целеустремленность; экологическая культура, бережное отношение к родной земле, природным богатствам России и мира, понимание ответственности за состояние природных ресурсов и разумное природопользование. Метапредметными результатами освоения выпускниками средней (полной) школы программы по физике являются: Освоение регулятивных универсальных учебных действий: самостоятельно определять цели, ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях; оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной ранее цели; сопоставлять имеющиеся возможности и необходимые для достижения цели ресурсы; определять несколько путей достижения поставленной цели; задавать параметры и критерии, по которым можно определить, что цель достигнута; сопоставлять полученный результат деятельности с поставленной заранее целью; оценивать последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей. Освоение познавательных универсальных учебных действий:

- критически оценивать и интерпретировать информацию с разных позиций;
- распознавать и фиксировать противоречия в информационных источниках;
- использовать различные модельно-схематические средства для представления выявленных в информационных источниках противоречий;
- осуществлять развернутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи;
- искать и находить обобщённые способы решения задач;
- приводить критические аргументы, как в отношении собственного суждения, так и в отношении действий и суждений другого человека;

- анализировать и преобразовывать проблемно-противоречивые ситуации; выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможности широкого переноса средств и способов действия; выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные ограничения; менять и удерживать разные позиции в познавательной деятельности (быть и учителем; формулировать образовательный запрос консультативные функции самостоятельно; ставить проблему и работать над её решением; управлять совместной познавательной деятельностью и подчиняться). Коммуникативные универсальные учебные действия: осуществлять деловую коммуникацию, как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за её пределами); при осуществлении групповой работы быть как руководителем, так и членом проектной команды в разных ролях (генератором идей, критиком, исполнителем, презентующим и т. д.); развернуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств; распознавать конфликтогенные ситуации и предотвращать конфликты до их активной фазы; согласовывать позиции членов команды в процессе работы над общим продуктом/решением; представлять публично результаты индивидуальной и групповой деятельности, как перед знакомой, так и перед незнакомой аудиторией;
- точно и ёмко формулировать как критические, так и одобрительные замечания в

результативности взаимодействия, а не личных симпатий;

адрес других людей в рамках деловой и образовательной коммуникации, избегая при этом личностных оценочных суждений.

воспринимать критические замечания как ресурс собственного развития;

подбирать партнёров для деловой коммуникации, исходя из соображений

Предметными результатами освоения выпускниками средней (полной) школы программы по физике на базовом уровне являются:

- сформированность представлений о закономерной связи и познаваемости явлений природы, об объективности научного знания; о роли и месте физики в современной научной картине мира; понимание роли физики в формировании кругозора и функциональной грамотности человека для решения практических задач;
- владение основополагающими физическими закономерностями, законами И теориями; уверенное пользование физической терминологией и символикой;
- сформированность представлений о физической сущности явлений природы (механических, тепловых, электромагнитных и квантовых), видах материи (вещество и поле), движении как способе существования материи; усвоение основных идей механики, атомно-молекулярного учения о строении вещества, элементов электродинамики и квантовой физики; овладение понятийным аппаратом и символическим языком физики;
- владение основными методами научного познания, используемыми в физике: наблюдение, описание, измерение, эксперимент; умения обрабатывать результаты измерений, обнаруживать зависимость между физическими величинами, объяснять полученные результаты и делать выводы;
- владение умениями выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов, проверять их экспериментальными средствами, формулируя цель исследования, владение умениями описывать объяснять

самостоятельно проведенные эксперименты, анализировать результаты полученной измерительной информации, определять достоверность полученного результата;

- сформированность умения решать простые физические задачи;
- сформированность умения применять полученные знания для объяснения условий протекания физических явлений в природе и для принятия практических решений в повседневной жизни;
- понимание физических основ и принципов действия (работы) машин и механизмов, средств передвижения и связи, бытовых приборов, промышленных технологических процессов, влияния их на окружающую среду; осознание возможных причин техногенных и экологических катастроф;
- сформированность собственной позиции по отношению к физической информации, получаемой из разных источников.

Предметными результатами освоения выпускниками средней (полной) школы программы по физике на углублённом уровне должны включать требования к результатам освоения базового курса и дополнительно отражать:

- сформированность системы знаний об общих физических закономерностях, законах, теориях и представлений о действии во Вселенной физических законов, открытых в земных условиях;
- сформированность умения исследовать и анализировать разнообразные физические явления и свойства объектов, объяснять принципы работы и характеристики приборов и устройств, объяснять геофизические явления;
- умение решать сложные задачи;
- владение умениями выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов, проверять их экспериментальными средствами, формулируя цель исследования;
- владение методами самостоятельного планирования и проведения физических экспериментов, описания и анализа полученной измерительной информации, определения достоверности полученного результата;
- сформированность умений прогнозировать, анализировать и оценивать последствия бытовой и производственной деятельности человека, связанной с физическими процессами, с позиций экологической безопасности.

СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА:

Основы электродинамики (продолжение) 15 часов

Магнитное поле. Вектор магнитной индукции. Принцип суперпозиции магнитных полей. Магнитное поле проводника с током. Действие магнитного поля на проводник с током и движущуюся заряженную частицу. Сила Ампера и сила Лоренца.

Поток вектора магнитной индукции. Явление электромагнитной индукции. Правило Ленца. Закон электромагнитной индукции. Вихревое электрическое поле. ЭДС индукции в движущихся проводниках. Явление самоиндукции. Индуктивность. Энергия магнитного поля тока. Магнитные свойства вещества.

Колебания и волны 25 часов

Механические колебания. Амплитуда, период, частота, фаза колебаний. Превращение энергии при колебаниях. Колебательный контур. Свободные электромагнитные колебания. Резонанс. Переменный электрический ток. Конденсатор и

катушка в цепи переменного тока. Элементарная теория трансформатора. Производство передача и потребление электрической энергии.

Механические волны. Поперечные и продольные волны. Энергия волны. Интерференция и дифракция волн.

Электромагнитное поле. Электромагнитная волна. Излучение электромагнитных волн. Энергия электромагнитной волны. Свойства электромагнитных волн. Принципы радиосвязи. Простейший радиоприемник. Распространение радиоволн. Радиолокация. Понятие о телевидении. Развитие средств связи.

Оптика 23 часов

Геометрическая оптика. Световые лучи. Закон прямолинейного распространения света.

Принцип Ферма и законы геометрической оптики. Отражение света. Плоское зеркало. Сферическое зеркало. Построение изображений в сферическом зеркале. Увеличение зеркала.

Преломление света. Полное отражение. Преломление света в плоскопараллельной пластинке и треугольной призме. Преломление на сферической поверхности. Линза. Фокусное расстояние и оптическая сила линзы. Формула линзы. Построение изображений в тонкой линзе. Увеличение линзы. Освещенность изображения, даваемого линзой. Недостатки линз. Оптические приборы.

Волновые свойства света. Скорость света. Дисперсия света. Интерференция света. Длина световой волны. Интерференция в тонких пленках. Кольца Ньютона. Некоторые применения интерференции. Дифракция света. Теория дифракции. Дифракция Френеля на простых объектах. Дифракционная решетка.. Поляризация света.

Виды излучений. Источники света. Спектры и спектральные приборы. Виды спектров. Спектральный анализ. Инфракрасное и ультрафиолетовое излучения. Рентгеновские лучи. Шкала электромагнитных излучений.

Основы специальной теории относительности 3 часа

Инвариантность модуля скорости света в вакууме. Принцип относительности Эйнштейна. Пространство и время в специальной теории относительности. Энергия и импульс свободной частицы. Связь между массой и энергией. Энергия покоя.

Квантовая физика 27 часов

Тепловое излучение. Распределение энергии в спектре абсолютно черного тела. Гипотеза Планка о квантах. Фотоэффект. Теория фотоэффекта. Фотоны. Применение фотоэффекта.

Опыты П. Н. Лебедева и С. И. Вавилова. Давление света. Химическое действие света. Фотография. Запись и воспроизведение звука в кино.

Строение атома. Модель Томсона. Опыты Резерфорда. Планетарная модель атома. Постулаты Бора. Модель атома водорода по Бору. Экспериментальное

доказательство существования стационарных состояний. Трудности теории Бора. Квантовая механика. Гипотеза де Бройля о волновых свойствах частиц. Корпускулярно-волновой дуализм. Многоэлектронные атомы. Квантовые источники света — лазеры.

Атомное ядро и элементарные частицы. Методы наблюдения и регистрации элементарных частиц. Открытие естественной радиоактивности. Альфа-, бета- и гамма-излучение. Радиоактивные превращения. Закон радиоактивного распада. Период полураспада. Изотопы. Правило смещения. Искусственное превращение атомных ядер. Открытие нейтрона. Строение атомного ядра. Ядерные силы. Энергия связи атомных ядер. Искусственная радиоактивность. Ядерные реакции. Деление ядер урана. Цепные ядерные реакции. Ядерный реактор. Термоядерные реакции. Применение ядерной энергии. Получение радиоактивных изотопов и их применение. Биологическое действие радиоактивных излучений.

Элементарные частицы. Фундаментальные взаимодействия. Ускорители элементарных частиц.

Строение Вселенной 5 часов

Применимость законов физики для объяснения природы космических объектов. Солнечная система как комплекс тел, имеющих общее происхождение. Общие характеристики планет. Планеты земной группы. Далекие планеты. Солнце и звезды. Классификация звезд. Эволюция Солнца и звезд.

Строение и эволюция Вселенной. Темная материя и темная энергия.

Единая физическая картина мира. Физика и научно-техническая революция.

Повторение - 4 часов

Примерный перечень практических и лабораторных работ

Прямые измерения:

- измерение мгновенной скорости с использованием секундомера или компьютера с датчиками;
- сравнение масс (по взаимодействию);
- измерение сил в механике;
- измерение температуры жидкостными и цифровыми термометрами;
- оценка сил взаимодействия молекул (методом отрыва капель);
- экспериментальная проверка закона Гей-Люссака (измерение термодинамических параметров газа;
- измерение ЭДС источника тока;
- определение периода обращения двойных звёзд (печатные материалы).

Косвенные измерения:

- измерение ускорения;
- измерение ускорения свободного падения;
- определение энергии и импульса по тормозному пути;

- измерение удельной теплоты плавления льда;
- измерение напряжённости вихревого электрического поля (при наблюдении электромагнитной индукции);
- измерение внутреннего сопротивления источника тока;
- определение показателя преломления среды;
- измерение фокусного расстояния собирающей и рассеивающей линз;
- определение длины световой волны;
- оценка информационной ёмкости компакт-диска (CD);
- определение импульса и энергии частицы при движении в магнитном поле (по фотографиям).

Наблюдения:

- наблюдение механических явлений в инерциальных и неинерциальных системах отсчёта;
- наблюдение вынужденных колебаний и резонанса;
- наблюдение диффузии;
- наблюдение явления электромагнитной индукции;
- наблюдение волновых свойств света: дифракция, интерференция, поляризация;
- наблюдение спектров;
- вечерние наблюдения звёзд, Луны и планет в телескоп или бинокль.

Исследования:

- исследование равноускоренного движения с использованием электронного секундомера или компьютера с датчиками;
- исследование движения тела, брошенного горизонтально;
- исследование центрального удара;
- исследование качения цилиндра по наклонной плоскости;
- исследование движения броуновской частицы (по трекам Перрена);
- исследование изопроцессов;
- исследование изохорного процесса и оценка абсолютного нуля;
- исследование остывания воды;
- исследование зависимости напряжения на полюсах источника тока от силы тока в цепи;
- исследование зависимости силы тока через лампочку от напряжения на ней;
- исследование нагревания воды нагревателем небольшой мощности;
- исследование явления электромагнитной индукции;
- исследование зависимости угла преломления от угла падения;
- исследование зависимости расстояния линзы до изображения от расстояния линзы до предмета;
- исследование спектра водорода;
- исследование движения двойных звёзд (по печатным материалам).

Проверка гипотез:

- при движении бруска по наклонной плоскости время перемещения на определённое расстояния тем больше, чем больше масса бруска;
- при движении бруска по наклонной плоскости скорость прямо пропорциональна пути;
- при затухании колебаний амплитуда обратно пропорциональна времени;
- квадрат среднего перемещение броуновской частицы прямо пропорционально времени наблюдения (по трекам Перрена);
- скорость остывания воды линейно зависит от времени остывания;
- напряжение при последовательном включении лампочки и резистора не равно сумме напряжений на лампочке и резисторе;
- угол преломления прямо пропорционален углу падения;
- при плотном сложении двух линз оптические силы складываются;

Конструирование технических устройств:

- конструирование наклонной плоскости с заданным КПД;
- конструирование рычажных весов;
- конструирование наклонной плоскости, по которой брусок движется с заданным ускорением;
- конструирование электродвигателя;
- конструирование трансформатора;
- конструирование модели телескопа или микроскопа.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

Тематическое планирование по физике для 11-го класса составлено с учетом рабочей программы воспитания. Воспитательный потенциал данного учебного предмета обеспечивает реализацию следующих целевых приоритетов воспитания обучающихся СОО:

- ✓ становления собственной жизненной позиции подростка, его собственных ценностных ориентаций;
- ✓ утверждения себя как личность в системе отношений, свойственных взрослому миру;
- ✓ развития социально значимых отношений школьников, и, прежде всего, ценностных отношений:
- ✓ к семье как главной опоре в жизни человека и источнику его счастья;
- ✓ к труду как основному способу достижения жизненного благополучия человека, залогу его успешного профессионального самоопределения и ощущения уверенности в завтрашнем дне;
- ✓ к своему отечеству, своей малой и большой Родине, как месту, в котором человек вырос и познал первые радости и неудачи, которая завещана ему предками и которую нужно оберегать;
- ✓ к природе как источнику жизни на Земле, основе самого ее существования, нуждающейся в защите и постоянном внимании со стороны человека;
- ✓ к миру как главному принципу человеческого общежития, условию креп-кой дружбы, налаживания отношений с коллегами по работе в будущем и создания благоприятного микроклимата в своей собственной семье;
- ✓ к знаниям как интеллектуальному ресурсу, обеспечивающему будущее человека, как результату кропотливого, но увлекательного учебного труда;
- ✓ к культуре как духовному богатству общества и важному условию ощущения человеком полноты проживаемой жизни, которое дают ему чтение, музыка, искусство, театр, творческое самовыражение;
- ✓ к здоровью как залогу долгой и активной жизни человека, его хорошего настроения и -оптимистичного взгляда на мир;
- ✓ к окружающим людям как безусловной и абсолютной ценности, как равноправным социальным партнерам, с которыми необходимо выстраивать доброжелательные и взаимоподдерживающие отношения, дающие человеку радость общения и позволяющие избегать чувства одиночества;
- ✓ к самим себе как хозяевам своей судьбы, самоопределяющимся и самореализующимся личностям, отвечающим за свое собственное будущее;
- ✓ установление доверительных отношений между учителем и его учениками, способствующих позитивному восприятию учащимися требований и просьб учителя, привлечению их внимания к обсуждаемой на уроке информации, активизации их познавательной деятельности;
- ✓ привлечение внимания школьников к ценностному аспекту изучаемых на уроках явлений, организация их работы с получаемой на уроке социально значимой информацией инициирование ее обсуждения, высказывания учащимися своего мнения по ее поводу, выработки своего к ней отношения;
- ✓ применение на уроке интерактивных форм работы учащихся: интеллектуальных игр, стимулирующих познавательную мотивацию школьников; дидактического театра, где полученные на уроке знания обыгрываются в театральных постановках; дискуссий, которые дают учащимся возможность приобрести опыт ведения конструктивного диалога; групповой работы или работы в парах, которые учат школьников командной работе и взаимодействию с другими детьми;

- ✓ включение в урок игровых процедур, которые помогают поддержать мотивацию детей к получению знаний, налаживанию позитивных межличностных отношений в классе, помогают установлению доброжелательной атмосферы во время урока;
- ✓ организация шефства мотивированных и эрудированных учащихся над их неуспевающими одноклассниками, дающего школьникам социально значимый опыт сотрудничества и взаимной помощи.

№ п/п	Название раздела	Количество часов
1	Основы электродинамики (продолжение)	17
2	Колебания и волны	25
3	Оптика	21
4	Основы специальной теории относительности	4
5	Квантовая физика	24
6	Астрономия	8
7	Повторение.	3
8	Итого.	102